
GPIO en Turnero (Raspberry Pi)
Servicio Python + despachador PHP

Objetivo
Leer pulsadores físicos conectados a los pines GPIO y, al apretar, llamar a la
API del Turnero:

• 17 → /api/botones/nuevo.php
• 27 → /api/botones/siguiente.php
• 22 → /api/botones/anterior.php

Esta guía instala todo bajo /var/www/html/turnero/pi y un ser-
vicio systemd que queda escuchando los pines.

Requisitos
• Raspberry Pi con Raspberry Pi OS.

• Paquetes del sistema:

sudo apt update
sudo apt install -y python3 python3-rpi.gpio php-curl

• Turnero funcionando (DB + API). Verifica que respondan:

curl -s -X POST http://127.0.0.1/turnero/api/botones/nuevo.php --data "queue_id=1"
curl -s -X POST http://127.0.0.1/turnero/api/botones/siguiente.php --data "queue_id=1"
curl -s -X POST http://127.0.0.1/turnero/api/botones/anterior.php --data "queue_id=1"

Cableado
• Cada pulsador entre GPIO � GND (usaremos pull-up interno).
• Numeración BCM:

– BCM 17 (físico 11): Nuevo
– BCM 27 (físico 13): Siguiente
– BCM 22 (físico 15): Anterior

En reposo el pin lee 1, al apretar (cerrar a GND) lee 0.

Archivos
Crea la carpeta /var/www/html/turnero/pi si no existe:

1

sudo mkdir -p /var/www/html/turnero/pi
sudo chown -R www-data:www-data /var/www/html/turnero/pi
sudo chmod 755 /var/www/html/turnero/pi

1) monitor_pullup_multi.py (lector GPIO con pull-up)

Ruta: /var/www/html/turnero/pi/monitor_pullup_multi.py

#!/usr/bin/env python3
-*- coding: utf-8 -*-
import argparse, time, json, requests
import RPi.GPIO as GPIO

def report(url, pin, value, queue_id=None):
try:

payload = {'pin': pin, 'value': value}
if queue_id:

payload['queue_id'] = queue_id
r = requests.post(url, data=json.dumps(payload),

headers={'Content-Type':'application/json'},
timeout=2)

print(f"[report] pin={pin} value={value} -> {r.status_code}")
except Exception as e:

print("[report] error:", e)

def main():
ap = argparse.ArgumentParser()
ap.add_argument('--pins', type=int, nargs='+', required=True, help='BCM pins')
ap.add_argument('--report-url', required=True)
ap.add_argument('--queue-id', type=int, default=1)
ap.add_argument('--debounce', type=int, default=200, help='ms')
ap.add_argument('--interval', type=float, default=0.02)
args = ap.parse_args()

GPIO.setmode(GPIO.BCM)
for p in args.pins:

GPIO.setup(p, GPIO.IN, pull_up_down=GPIO.PUD_UP)

last = {p: GPIO.input(p) for p in args.pins}
stable_since = {p: time.time() for p in args.pins}
print(f"[multi] PULL-UP activo en BCM {args.pins}. Reposo=1, Apretado=0")

try:
while True:

now = time.time()
for p in args.pins:

2

v = GPIO.input(p)
if v != last[p]:

if (now - stable_since[p]) * 1000 >= args.debounce:
report(args.report_url, p, f"event:{v}", args.queue_id)
last[p] = v
stable_since[p] = now

else:
stable_since[p] = now

time.sleep(args.interval)
except KeyboardInterrupt:

pass
finally:

GPIO.cleanup()

if __name__ == "__main__":
main()

2) gpio_dispatch.php (router → API botones)

Ruta: /var/www/html/turnero/pi/gpio_dispatch.php

<?php
declare(strict_types=1);
header('Content-Type: application/json; charset=utf-8');
error_reporting(0); ini_set('display_errors','0');

/* Config */
const DEFAULT_QUEUE_ID = 1; // cola por defecto si no mandan otra
$PIN_MAP = [
17 => 'nuevo',
27 => 'siguiente',
22 => 'anterior',

];

/* Solo localhost */
$ip = $_SERVER['REMOTE_ADDR'] ?? '';
if (!in_array($ip, ['127.0.0.1','::1'], true)) {
http_response_code(403);
echo json_encode(['ok'=>false,'error'=>'Forbidden']); exit;

}

/* Leer JSON/form */
$raw = file_get_contents('php://input') ?: '';
$data = json_decode($raw, true);
if (!is_array($data)) {
$data = [

3

'pin' => isset($_POST['pin']) ? (int)$_POST['pin'] : null,
'value' => (string)($_POST['value'] ?? ''),
'queue_id' => isset($_POST['queue_id']) ? (int)$_POST['queue_id'] : null,

];
}

$pin = isset($data['pin']) ? (int)$data['pin'] : null;
$value = (string)($data['value'] ?? '');
$qid = isset($data['queue_id']) ? max(1,(int)$data['queue_id']) : DEFAULT_QUEUE_ID;

/* Log simple (últimos 200 eventos) */
$logf = __DIR__ . '/gpio_events.json';
$ev = ['pin'=>$pin,'value'=>$value,'queue'=>$qid,'ts'=>time(),'ts_iso'=>date('c')];
$events = [];
if (is_file($logf)) { $prev = json_decode((string)@file_get_contents($logf), true); if (is_array($prev)) $events=$prev; }
array_unshift($events, $ev); $events = array_slice($events,0,200);
@file_put_contents($logf, json_encode($events, JSON_PRETTY_PRINT|JSON_UNESCAPED_UNICODE));

/* Disparar solo en APRETADO (event:0) */
if (strpos($value,'event:')===0 ? substr($value,6)==='0' : $value==='pressed') {
$action = $PIN_MAP[$pin] ?? null;
if ($action) {
$url = "http://localhost/turnero/api/botones/{$action}.php";
$body = http_build_query(['queue_id'=>$qid], '', '&');
$ch = curl_init($url);
curl_setopt_array($ch, [
CURLOPT_POST=>true, CURLOPT_POSTFIELDS=>$body,
CURLOPT_HTTPHEADER=>['Accept: application/json','Content-Type: application/x-www-form-urlencoded'],
CURLOPT_RETURNTRANSFER=>true, CURLOPT_TIMEOUT=>5,

]);
$resp = curl_exec($ch);
$code = curl_getinfo($ch, CURLINFO_HTTP_CODE);
curl_close($ch);
if ($resp===false || $code<200 || $code>=300) {
echo json_encode(['ok'=>false,'event'=>$ev,'action'=>$action,'forward_status'=>$code,'body'=>$resp]); exit;

}
$out = json_decode($resp,true);
echo json_encode(['ok'=>true,'event'=>$ev,'action'=>$action,'result'=>$out]); exit;

}
}

echo json_encode(['ok'=>true,'event'=>$ev,'note'=>'logged-only']);

3) Servicio systemd

Ruta: /etc/systemd/system/gpio_buttons.service

4

[Unit]
Description=Turnero GPIO Buttons (multipin pull-up)
After=network.target

[Service]
Type=simple
User=root
WorkingDirectory=/var/www/html/turnero/pi
Environment=PYTHONUNBUFFERED=1
ExecStart=/usr/bin/python3 /var/www/html/turnero/pi/monitor_pullup_multi.py --pins 17 27 22 --queue-id 1 --debounce 200 --report-url http://127.0.0.1/turnero/pi/gpio_dispatch.php
Restart=always
RestartSec=2

[Install]
WantedBy=multi-user.target

Activar y ver estado:

sudo systemctl daemon-reload
sudo systemctl enable --now gpio_buttons.service
sudo systemctl status gpio_buttons.service --no-pager
journalctl -u gpio_buttons.service -f

Pruebas
1) Simulación sin hardware (empujar evento al dispatcher):

curl -s -X POST http://127.0.0.1/turnero/pi/gpio_dispatch.php -H 'Content-Type: application/json' --data '{"pin":17,"value":"event:0","queue_id":1}' | jq

2) Ver eventos guardados:

tail -n 10 /var/www/html/turnero/pi/gpio_events.json

3) Estado de la pantalla:

curl -s "http://127.0.0.1/turnero/api/queues_state.php?queue_id=1&next_limit=5&_=$(date +%s)" | jq

4) Con hardware: presiona el pulsador de BCM17 → debe aparecer un
turno nuevo en next[]. BCM27 avanza el turno; BCM22 retrocede.

Personalización
• Otra cola: cambia --queue-id 1 en el ExecStart del servicio (o envía

queue_id en el JSON si tu fuente lo permite).
• Rebote: ajusta --debounce (ms). 200–300 ms suele ir bien para pul-

sadores mecánicos.

5

• Mapeo de pines: edita $PIN_MAP en gpio_dispatch.php si quieres otras
funciones o pines.

Seguridad
• gpio_dispatch.php solo acepta localhost. Si reportaras desde otra

máquina, agrega un token (ej. header X-Button-Key) y valida en el PHP.
• php-curl es obligatorio para que el dispatcher pueda llamar a los end-

points de tu app.

Logs y mantenimiento
• Logs del servicio:

journalctl -u gpio_buttons.service -f

• Reiniciar servicio tras cambios:

sudo systemctl restart gpio_buttons.service

• Desinstalar:

sudo systemctl disable --now gpio_buttons.service
sudo rm /etc/systemd/system/gpio_buttons.service
sudo systemctl daemon-reload

Árbol final recomendado
/var/www/html/turnero/
�� pi/

�� README.md ← este archivo
�� monitor_pullup_multi.py ← servicio lector GPIO
�� gpio_dispatch.php ← router → /api/botones/*
�� gpio_events.json ← log de últimos eventos

Con esto, el flujo queda: GPIO → monitor (pull-up) → dis-
patch PHP → /api/botones/* → DB → queues_state.php
→ pantalla.

6

	GPIO en Turnero (Raspberry Pi)
	Objetivo
	Requisitos
	Cableado
	Archivos
	1) monitor_pullup_multi.py (lector GPIO con pull-up)
	2) gpio_dispatch.php (router → API botones)
	3) Servicio systemd

	Pruebas
	Personalización
	Seguridad
	Logs y mantenimiento
	Árbol final recomendado

